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We present a comprehensive numerical study on the ground state phase diagram of the two-dimensional hard
core bosonic extended Hubbard model with nearest �V1� and next nearest neighbor �V2� repulsions. In addition
to the quantum solid and superfluid phases, we report the existence of a striped supersolid and three-quarter
�quarter�-filled supersolid at commensurate density �=0.75 �0.25� due to the interplay of V1 and V2 interac-
tions. The nature of the three-quarter-filled supersolid and the associated quantum solid will be discussed. The
observed quantum phase transition between the two supersolids of different symmetries is found to be first
order.

DOI: 10.1103/PhysRevB.77.052506 PACS number�s�: 67.80.kb, 75.10.Jm, 05.30.Jp, 75.40.Mg

The supersolid �SS� state,1,2 in which both diagonal and
off-diagonal long-range order coexist, has been intensively
discussed on various models.3–8 This is partially due to the
experimental advance of optical lattices in interacting cold
bosonic atoms where the exotic supersolid phase may be
observed experimentally. Furthermore, the supersolid phase
of spin models is also of great interest as these quantum spin
systems may be realized in real materials.6–8

The simplest hard core boson model that includes only the
nearest neighbor �NN� interaction, however, does not stabi-
lize the supersolid phase on a square lattice.3–9 To induce the
supersolid phase, one may relax the hard core constraint to
soft core4 or include the next nearest neighbor �NNN�
interactions.3 For the latter case, a striped supersolid �SS1�
phase is found associated with the half-filled striped solid
�QS1� phase, where bosons form stripes that break the x-y
symmetry. This stripe structure allows the superfluid compo-
nent to easily flow through the channels between stripes, and
therefore, coexistence of both solid and superfluid ordering is
possible. Unlike the striped solid, the hard core checkerboard
solid provides no pathway for the superfluid component and
no checkerboard SS of hardcore bosons has been found so
far, unless NNN hopping is included.10 In this work, we
present a comprehensive study on the phase diagram of the
hard core boson Hubbard model with NN and NNN interac-
tions. A three-quarter-filled supersolid that, like the checker-
board SS, preserves the x-y symmetry is stabilized in a large
parameter regime of V1 and V2. Associated with the super-
solid is a three-quarter-filled quantum solid which share the
same starlike occupation pattern �see inset of Fig. 1�. For
clarity, hereafter we refer to this solid and supersolid as the
star solid �QS2� and star supersolid �SS2�. Interestingly, the
supersolids, SS1 and SS2, that possess different underlying
symmetries compete in some parameter regimes in which a
first order phase transition occurs, in contrast to recent work
on a similar model.10 We tackle the problem with both quan-
tum Monte Carlo �QMC� and variational Monte Carlo
�VMC� methods, which give consistent results. A generic
Jastrow wave function in the VMC is able to generate the
qualitative features of all phases in QMC calculations.

We study the bosonic extended Hubbard model on a two-
dimensional square lattice with the Hamiltonian
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where b �b†� is the boson destruction �creation� operator and
�nn ��nnn� sums over the �next� nearest neighboring sites. To
set the energy scale of the problem, we let t=1 throughout
the Brief Report. At half-filling, the ground state can be a
checkerboard solid �with wave vector �� ,��� for strong NN
coupling V1, or a striped solid �with wave vector �� ,0� or
�0,��� for strong NNN coupling V2.3 For competing values
of V1 and V2, however, quantum frustration disfavors both
solid structures and leads to the condensation of bosons in-
stead, i.e., a superfluid ground state. Upon doping for large
V2, as mentioned above, the striped solid structure provides
channels of superflow so that extra bosons can form a super-
fluid on top of the striped structure which leads to a striped
supersolid. Note that the quantum effect eventually drives all
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FIG. 1. �Color online� Ground state phase diagram of V2 as a
function of V1 for density �=0.75. The first �second� order phase
transition is denoted by dotted �solid� lines. The inset shows the
boson occupation profile �the star pattern� of the QS2 and SS2
phases. The cross shows a representative point of the QS2 phase at
�=0.75, where the order parameters are plotted in Fig. 2. Lattice
sizes of 36�36 and 28�28 are used with temperature �=1 /2L.
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bosons to participate in the superflow, although the superflu-
idity that transverses the stripes is much smaller.3 For domi-
nating V1, on the other hand, additional bosons form no con-
densate on the checkerboard solid because domain formation
is energetically more favorable. As a consequence, no super-
solid of checkerboard solid ordering is found. The phase dia-
gram at half-filling and the result of doping close to half-
filling have been discussed in detail in Ref. 3.

Remarkably, when further increasing doping to �=0.75,
our numerical calculations show a rich phase diagram that
contains a superfluid �SF� phase, a star solid phase which has
finite structure factor S�Q� /N=�ij�ninje

iQrij� /N2 at Q0

= �� ,�� , = �� ,0�, and =�0,��, and supersolid phases of ei-
ther star ordering or striped ordering. The result obtained
from QMC calculations based on the stochastic series expan-
sion algorithm11 on a square lattice is presented in Fig. 1. In
QMC, the superfluidity, given by �s= �W2� /4�t, is computed
by measuring the winding number fluctuation. The calcula-
tion is done by scanning over different ��s grand canonically
to search for the right � that fixes the density at �=0.75 for
each coordinate pair �V1 ,V2� in the diagram. Due to the
particle-hole symmetry of the Hamiltonian H, one must ob-
tain the same phase diagram as in Fig. 1 for �=0.25. In this
Brief Reports we will focus on �=0.75, but all discussion
applies to �=0.25 as well. Let us now discuss each phase in
more detail, starting with the star solid QS2.

The inset of Fig. 1 shows the ordering of the QS2. The
lattice contains four square sublattices with twice the lattice
constant. It is important to stress that QS2 is not a solid, with
three fully occupied sublattices and one empty sublattice,
which naturally gives �=0.75. Our calculation shows that all
sites have finite occupations as shown in the figure. Owing to
the x-y symmetry, two of the sublattices are identical. A typi-
cal structure of QS2 has one of the sublattices almost fully
occupied, the two identical sublattices have occupation n,
while the last sublattice has occupation �2�1−n�. For in-
stance, at V1=2.0 and V2=6.0, the occupations on different
sublattices are 0.99, 0.37, 0.37, and 0.27, respectively. It is
not surprising that quantum fluctuation and the gain in ki-
netic energy favor this structure rather than the one with one
sublattice unoccupied. One important feature of the QS2
phase is that although the S�Q0� /N are finite, they are rather
small compared to those of the striped solid QS1. In Fig. 2,
we show the order parameters as a function of � at V1=2 and
V2=6, a representative point �the cross in Fig. 1� of the SS2
phase in the phase diagram.

A clear plateau appearing in the density curve signals the
existence of a solid phase, in which the superfluid density
�x�y� vanishes, but S�Q0� /N �Fig. 2� is finite and remains flat
throughout the QS2 phase. Structure factors of all other wave
vectors are essentially zero except S�Q0� /N, which remains
finite under finite-size analysis. It is noted that the striped
solid QS1 at half-filling has S�� ,0� /N�0.2 �not shown�.
The small value of S�Q0� /N in QS2, therefore, indicates that
the solid QS2 is rather soft.

Moving away from density �=0.75 by increasing or re-
ducing �, there exist supersolid phases �SS2� characterized
by the same star solid ordering �wave vector Q0� as the QS2.
In this phase, x-y symmetry is preserved such that

S�� ,0� /N=S�0,�� /N and is about twice S�� ,��. At larger
�, all these peaks reduce simultaneously away from the QS2
and vanish at the same critical point where SF emerges. This
implies that SS2 is a unique phase characterized by wave
vectors Q0, but is not a mixture of striped phases. Remark-
ably, like the QS2 state, the SS2 state has one sublattice
being almost fully occupied. Nevertheless, the condensate
density nk=0 is found to be nonzero in that sublattice. The
transition from QS2 to SS2 is second order as both �x�y� and
S�Q0� /N change continuously across phase boundaries and
no abrupt change in order parameters is observed. The finite-
size effect will change the phase boundaries slightly, but not
the general features of the transitions. An example of finite-
size scaling of the order parameter in the SS2 phase is dem-
onstrated in Fig. 3.

On the other hand, there is clearly a first order phase
transition from SS2 to SS1 where all parameters exhibit a
sudden jump at �−2V1−2V2	12.72 as shown in Fig. 2.
This discontinuity arises from the distinct broken crystal
symmetry of the two supersolids. Our VMC calculation, pre-
sented later, also supports the discontinuous phase transition.
It is worth noting that a recent study by Chen et al.10 on the
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FIG. 2. �Color online� QMC result of �a� boson density �, �b�
superfluidity �x and �y, and �c� structure factor of wave vectors
�� ,��, �0,��, and �� ,0�, as functions of chemical potential
�−2V1−2V2. V1=2.0, V2=6.0, and lattice size is 28�28.
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FIG. 3. �Color online� Finite-size scaling of QMC data for �x,
�y, S�0,�� /N, S�� ,0� /N, and S�� ,�� /N of the SS2 phase with
V1=2.0, V2=6.0, and �−2V1−2V2=14.5.
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same model but with the NNN hopping t� included also ob-
serves the QS2 and SS2 phases. Our result indicates that t�
plays no significant role in the stabilization of both QS2 and
SS2 phases, which instead is a direct consequence of com-
petition between V1 and V2 interactions. Furthermore, con-
trary to our findings, Chen et al. observed a crossover from
SS1 to SS2. Whether it arises from t� is still unclear.

Moving down from the cross along the dashed line in Fig.
1, the width of the QS2 plateau shrinks as V2 decreases.
When V2	5.2, the QS2 phase disappears and the ground
state changes continuously to the SS2. Figure 4 shows how
�s and S�Q0� /N change as functions of V2 at V1=2.0. By
reducing the NNN repulsion, the system gains kinetic energy
that favors superfluidity and softens the solid structure at the
same time. Consequently, QS2 continuously changes to SS2
and eventually to SF at V2=4.0, where all peaks of S�Q0� /N
vanish simultaneously. Note that there is a large parameter
range where SS2 is stabilized at this commensurate density
�=0.75.

A more complicated situation arises for V1�1, in which
the NN repulsion is too weak to support the starlike structure
against the striped one. Figure 1 shows the emergence of SS1
at small V1�1 within the SS2 regime. The phase transition
between SS1 and SS2 is again first order because of the
different broken translational symmetries �inset of Fig. 4�.
For vanishing V1, neither SS2 and QS2 is stabilized and the
ground states are found to have striped ordering for all fill-
ings, consistent with the previous findings.3 In other words,
the necessary condition for the appearance of the starlike
quantum solid and supersolid is the competition between NN
and NNN interactions.

To further investigate the effect of finite V1, we plot in
Fig. 5 the phase diagram of fixed V1=2 with varying �. The
phase diagram is similar to the case of vanishing V1 �see Ref.
3� except that two other phases, SS2 and QS2, emerge within
the SS1 phase. Within this phase, by increasing � �e.g., along
the dashed line� such that � approaches 0.75, the starlike
ordering becomes energetically more favorable than the
striped ordering as discussed before and SS2 or QS2 is sta-

bilized. Note that this happens only when V2�4; otherwise,
the SS1 state simply dissolves into the SF state upon increas-
ing �. The emergence of SS2 and QS2 in the phase diagram
reflects the interplay of NN and NNN interactions of the
system.

Now let us present our results by VMC in support of the
star solid QS2 and SS2 found in the QMC calculation. The
wave function we used is the standard Jastrow wave func-
tion, which is defined as


�� = exp�− �
i�j

vi,jninj�
	0� , �2�

where 
	0�= �bk=0
† �N
0� is the noninteracting superfluid wave

function and N is the total number of bosons. In order to
incorporate all kinds of phases in the same wave function,
the pairwise potential vi,j’s are independently optimized by
the algorithm proposed by Capello et al.12 To determine the
phase diagram, we calculate the number of bosons in the
zero momentum mode, the condensate, Nk=0=bk=0

† bk=0,
S�� ,0�, and S�� ,�� for the optimized wave function. In Fig.
6�a�, three order parameters are shown as a function of den-
sity for given V1=4 and V2=6. As density increases, the
phase changes from SF to SS2 around the QS2 at �=0.25.
With ��0.28, S�� ,0� vanishes and the system becomes a
SS1 and a QS1 at �=0.5. This is consistent with the phase
diagram �Fig. 1� obtained by QMC. In order to verify if the
SS2 is thermodynamically stable, we show the boson density
as a function of �, which is calculated from the energy of
adding an extra particle to the system �=E�N+1�−E�N�.
Two plateaus are found at densities �=0.25 and 0.5, which
correspond to QS2 and QS1, respectively. A positive slope
around the plateau at �=0.25 indicates that the SS2 found is
stable against phase separation. Although there are discrep-
ancies in the position of the phase boundaries, the Jastrow
wave function alone captures the essential features, and suc-
cessfully generates all the observed phases in QMC.

In Fig. 7�a�, we show the order parameters as a function
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FIG. 4. �Color online� Ground state order parameters of a
28�28 lattice at �=0.75 for different V2. Inset shows the first order
phase transition at V2=6.0.
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of V2 with V1=4 and �=0.25. The three phases found in Fig.
4 for V2=2 are also observed here. The representative
optimized variational parameters v�rij� for SF �V2=2�, SS2
�V2=5.5� and QS2 �V2=8� are shown in Fig. 7�b�. The data
�r
2� are fitted to an exponential form Ae−r/�, with decay
lengths �=2.0, 2.21, and 2.68 for SF, SS2, and QS2, respec-
tively. The large value of v�rij� and � in the QS2 phase indi-
cates the existence of a strong long-range repulsion between
bosons, while the interaction is short range in the SS2 and SF
phases accordingly.

In summary, we present numerical evidences for the ap-
pearance of a quantum solid, a supersolid phase with star
pattern, and a striped supersolid at or around �=0.75 or 0.25.
The competition between NN and NNN interactions is found
to be important for the observation of both QS2 and SS2. A
detailed study is given on the ground state phase diagrams by
varying V1 and V2 as well as the chemical potential �. The
quantum phase transition between SS1 and SS2 appears to be
first order because of the abrupt change of translational sym-
metry. Our VMC calculation also supports the QMC find-

ings, and the simple Jastrow wave function alone is adequate
to generate all the phases, consistent with the QMC calcula-
tions.

Note added. Recently, we notice that Chen et al. have
updated their preprint with new results for larger L, showing
that the transition between SS2 and SS1 is first order, con-
sistent with our findings.

The authors thank M. F. Yang for fruitful discussions and
acknowledge the support of the National Center for Theoret-
ical Science. K.K.N. acknowledges financial support by the
NSC �R.O.C.�, Grants Nos. NSC 95-2112-M-029-010-MY2
and NSC 95-2110-M-029-004. Y.C.C. is supported by NSC
95-2112-M-029-003-MY3. Part of the calculation is sup-
ported by the National Center for High Performance Calcu-
lation �Taiwan�.

1 O. Penrose and L. Onsager, Phys. Rev. 104, 576 �1956�.
2 A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107

�1969�; G. V. Chester, Phys. Rev. A 2, 256 �1970�; A. J. Leggett,
Phys. Rev. Lett. 25, 1543 �1970�.

3 G. G. Batrouni and R. T. Scalettar, G. G. Batrouni, R. T. Scalettar,
G. Schmid, M. Troyer, and A. Dorueich, Phys. Rev. Lett. 84,
1599 �2000�; F. Hebert, G. G. Batrouni, R. T. Scalettar, G.
Schmid, M. Troyer, and A. Dorneich, Phys. Rev. B 65, 014513
�2001�.

4 P. Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid,
Phys. Rev. Lett. 94, 207202 �2005�.

5 S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 �2005�; D.
Heidarian and K. Damle, ibid. 95, 127206 �2005�; R. G. Melko,
A. Paramekauti, A. A. Burkov, A. Vishwanath, D. N. Sheng, and
L. Balents, ibid. 95, 127207 �2005�.

6 K. K. Ng and T. K. Lee, Phys. Rev. Lett. 97, 127204 �2006�.
7 N. Laflorencie and F. Mila, Phys. Rev. Lett. 99, 027202 �2007�.
8 P. Sengupta and C. D. Batista, Phys. Rev. Lett. 98, 227201

�2007�.
9 G. Schmid, S. Todo, M. Troyer, and A. Dorneich, Phys. Rev. Lett.

88, 167208 �2002�.
10 Y. C. Chen, R. Melko, S. Wessel, and Y. J. Kao, Phys. Rev. B 77,

014524 �2008�.
11 A. W. Sandvik, Phys. Rev. B 59, R14157 �1999�; 56, 11678

�1997�; O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66,
046701 �2002�.

12 M. Capello, F. Becca, M. Fabrizio, and S. Sorella, Phys. Rev.
Lett. 99, 056402 �2007�; S. Sorella, Phys. Rev. B 71, 241103�R�
�2005�.

FIG. 6. �Color online� VMC results of �a� the condensate Nk=0

�square� and structure factor of wave vectors �� ,�� �circle� and
�0,�� �triangle� as functions of density, and �b� boson density � as
a function of the chemical potential. Here, V1=4, V2=6, and lattice
size is 24�24.

FIG. 7. �Color online� �a� VMC results of the condensate Nk=0,
structure factor of wavevectors �� ,�� and �0,�� as functions of V2

with V1=4 and the boson density n=0.25. The inset shows the
corresponding QMC data for comparison. Note that the black
squares denote the superfluidity �y in the QMC data. �b� The varia-
tional parameters vi,j vs rij for V2=2, 5.5 and 8. The solid lines are
the fitting functions of Ae−rij/�. The lattice size is 24�24.
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